Scientific publications

Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome

Rodriguez-Madoz JR (1), San Jose-Eneriz E (2), Rabal O (3), Zapata-Linares N (1), Miranda E (2), Rodriguez S (1), Porciuncula A (1), Vilas-Zornoza A (2), Garate L (2), Segura V (4), Guruceaga E (4), Agirre X (2), Oyarzabal J (3), Prosper F (1,2,5).

(1) Cell Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
(2) Oncohematology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
(3) Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
(4) Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
(5) Hematology and Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain.

Magazine: PLoS One

Date: Dec 27, 2017

Cell Therapy Area [SP]

ABSTRACT

The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications.

In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC.

Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming.

Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.

CITATION PLoS One. 2017 Dec 27;12(12):e0190275. doi: 10.1371/journal.pone.0190275. eCollection 2017

you maybe interested

WHAT TECHNOLOGY
DO WE USE?

The Clínica is the greater private hospital with technological equipment of Spain, all in a single center.

Imagen de un PET, tecnología de vanguardia en la Clínica Universidad de Navarra

OUR
PROFESSIONALS

The professionals of the Clínica perform continuous research and training, always to the benefit of the patient.

Imagen profesionales de la Clínica Universidad de Navarra

WHY CHOOSE
THE CLINICA?

Learn why we are different from other healthcare centers. Quality, speed, comfort and results.

Imagen del edificio de la Clínica Universidad de Navarra