Scientific publications

Laboratory sample stability. Is it possible to define a consensus stability function? An example of five blood magnitudes

Gómez Rioja R (1,2), Martínez Espartosa D (2,3), Segovia M (1,2), Ibarz M (2,4), Llopis MA (2,5), Bauça JM (2,6), Marzana I (2,7), Barba N (2,8), Ventura M (2), García Del Pino I (2,9), Puente JJ (2,10), Caballero A (2,11), Gómez C (2,5), García Álvarez A (2,12), Alsina MJ (2), Álvarez V (2).

(1) La Paz - Cantoblanco - Carlos III University Hospital - Laboratory Medicine, Madrid, Spain.
(2) Sociedad Española de Medicina de Laboratorio - Comisión de Calidad Extra analítica, Barcelona, Spain.
(3) Clínica Universidad de Navarra - Laboratory Medicine, Madrid, Spain.
(4) Hospital Universitari Arnau de Vilanova - Laboratori Clínic Territorial ICS, IRB Lleida, Lleida, Catalunya, Spain.
(5) Hospital Universitari Germans Trias i Pujol - Laboratory Medicine, Badalona, Spain.
(6) Department of Laboratory Medicine, Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain.
(7) Hospital Universitario Cruces - Laboratory, Barakaldo, País Vasco, Spain.
(8) CatLab - Laboratory, Viladecavalls, Barcelona, Spain.
(9) Complexo Hospitalario Universitario A Coruña - Area Laboratory, A Coruña, Spain.
(10) Hospital Clínico Universitario Lozano Blesa - Servicio de Bioquímica, Zaragoza, Spain.
(11) Hospital Vall d'Hebron - Servei de Bioquimica, Barcelona, Catalunya, Spain.
(12) Hospital Clínico Universitario San Carlos, Madrid, Madrid, Spain.

Magazine: Clinical Chemistry and Laboratory Medicine

Date: May 5, 2018

Biochemistry [SP]

BACKGROUND:

The stability limit of an analyte in a biological sample can be defined as the time required until a measured property acquires a bias higher than a defined specification. Many studies assessing stability and presenting recommendations of stability limits are available, but differences among them are frequent.

The aim of this study was to classify and to grade a set of bibliographic studies on the stability of five common blood measurands and subsequently generate a consensus stability function.

METHODS:

First, a bibliographic search was made for stability studies for five analytes in blood: alanine aminotransferase (ALT), glucose, phosphorus, potassium and prostate specific antigen (PSA).

The quality of every study was evaluated using an in-house grading tool. Second, the different conditions of stability were uniformly defined and the percent deviation (PD%) over time for each analyte and condition were scattered while unifying studies with similar conditions.

RESULTS:

From the 37 articles considered as valid, up to 130 experiments were evaluated and 629 PD% data were included (106 for ALT, 180 for glucose, 113 for phosphorus, 145 for potassium and 85 for PSA). Consensus stability equations were established for glucose, potassium, phosphorus and PSA, but not for ALT.

CONCLUSIONS:

Time is the main variable affecting stability in medical laboratory samples. Bibliographic studies differ in recommedations of stability limits mainly because of different specifications for maximum allowable error. Definition of a consensus stability function in specific conditions can help laboratories define stability limits using their own quality specifications.

CITATION  Clin Chem Lab Med. 2018 May 5. pii: /j/cclm.ahead-of-print/cclm-2017-1189/cclm-2017-1189.xml. doi: 10.1515/cclm-2017-1189

you maybe interested

WHAT TECHNOLOGY
DO WE USE?

The Clínica is the greater private hospital with technological equipment of Spain, all in a single center.

Imagen de un PET, tecnología de vanguardia en la Clínica Universidad de Navarra

OUR
PROFESSIONALS

The professionals of the Clínica perform continuous research and training, always to the benefit of the patient.

Imagen profesionales de la Clínica Universidad de Navarra

WHY CHOOSE
THE CLINICA?

Learn why we are different from other healthcare centers. Quality, speed, comfort and results.

Imagen del edificio de la Clínica Universidad de Navarra