Scientific publications

18F-fluorodeoxyglucose positron emission tomography in the diagnosis of malignancy in patients with paraneoplastic neurological syndrome: a systematic review and meta-analysis

May 27, 2017 | Magazine: European Journal of Nuclear Medicine and Molecular Imaging

García Vicente AM (1), Delgado-Bolton RC (2), Amo-Salas M (3), López-Fidalgo J (4), Caresia Aróztegui AP (5), García Garzón JR (6), Orcajo Rincón J (7), García Velloso MJ (8), de Arcocha Torres M (9), Alvárez Ruíz S (10); Oncology Task Force of Spanish Society of Nuclear Medicine and Molecular Imaging.

The detection of occult cancer in patients suspected of having a paraneoplastic neurological syndrome (PNS) poses a diagnostic challenge.

The aim of our study was to perform a systematic review and meta-analysis to assess the diagnostic performance of FDG PET for the detection of occult malignant disease responsible for PNS.

A systematic review of the literature (MEDLINE, EMBASE, Cochrane, and DARE) was undertaken to identify studies published in any language. The search strategy was structured after addressing clinical questions regarding the validity or usefulness of the test, following the PICO framework.

Inclusion criteria were studies involving patients with PNS in whom FDG PET was performed to detect malignancy, and which reported sufficient primary data to allow calculation of diagnostic accuracy parameters.

When possible, a meta-analysis was performed to calculate the joint sensitivity, specificity, and detection rate for malignancy (with 95% confidence intervals [CIs]), as well as a subgroup analysis based on patient characteristics (antibodies, syndrome).

The comprehensive literature search revealed 700 references. Sixteen studies met the inclusion criteria and were ultimately selected. Most of the studies were retrospective (12/16). For the quality assessment, the QUADAS-2 tool was applied to assess the risk of bias.

Across 16 studies (793 patients), the joint sensitivity, specificity, and detection rate for malignancy with FDG PET were 0.87 (95% CI: 0.80-0.93), 0.86 (95% CI: 0.83-0.89), and 14.9% (95% CI: 11.5-18.7), respectively.

The area under the curve (AUC) of the summary ROC curve was 0.917. Homogeneity of results was observed for sensitivity but not for specificity. Some of the individual studies showed large 95% CIs as a result of small sample size.

The results of our meta-analysis reveal high diagnostic performance of FDG PET in the detection of malignancy responsible for PNS, not affected by the presence of onconeural antibodies or clinical characteristics.

CITATION  Eur J Nucl Med Mol Imaging. 2017 May 27. doi: 10.1007/s00259-017-3722-4