Publicaciones científicas

Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation

26-may-2020 | Revista: PNAS. Proceedings of the National Academy of Sciences of the United States of America

Jay Luther (1, 2, 3), Sanjoy Khan (1), Manish K Gala (1, 2 , Dmitry Kedrin (1), Gautham Sridharan (4, 5), Russell P Goodman (1), John J Garber (1), Ricard Masia (6), Erik Diagacomo (1), Daniel Adams (7), Kevin R King (8), Samuel Piaker (1), Hans-Christian Reinecker (1), Martin L Yarmush (4, 5), Josepmaria Argemi (9, 10), Ramon Bataller  (9, 10), Jules L Dienstag (1), Raymond T Chung (1), Suraj J Patel (11, 3, 12)

(1) Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
(2) Clinical and Translational Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
(3) Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
(4) Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114.
(5) Shriners Burns Hospital, Boston, MA 02114.
(6) Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
(7) Heprotech Inc., Cambridge, MA 02139.
(8) Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92093.
(9) Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh, Pittsburgh, PA 15260.
(10) Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260.
(11) Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
(12) Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.


Alcohol-related liver disease (ALD) accounts for the majority of cirrhosis and liver-related deaths worldwide. Activation of IFN-regulatory factor (IRF3) initiates alcohol-induced hepatocyte apoptosis, which fuels a robust secondary inflammatory response that drives ALD.

The dominant molecular mechanism by which alcohol activates IRF3 and the pathways that amplify inflammatory signals in ALD remains unknown. Here we show that cytoplasmic sensor cyclic guanosine monophosphate-adenosine monophosphate (AMP) synthase (cGAS) drives IRF3 activation in both alcohol-injured hepatocytes and the neighboring parenchyma via a gap junction intercellular communication pathway.

Hepatic RNA-seq analysis of patients with a wide spectrum of ALD revealed that expression of the cGAS-IRF3 pathway correlated positively with disease severity. Alcohol-fed mice demonstrated increased hepatic expression of the cGAS-IRF3 pathway. Mice genetically deficient in cGAS and IRF3 were protected against ALD.

Ablation of cGAS in hepatocytes only phenocopied this hepatoprotection, highlighting the critical role of hepatocytes in fueling the cGAS-IRF3 response to alcohol. We identified connexin 32 (Cx32), the predominant hepatic gap junction, as a critical regulator of spreading cGAS-driven IRF3 activation through the liver parenchyma.

Disruption of Cx32 in ALD impaired IRF3-stimulated gene expression, resulting in decreased hepatic injury despite an increase in hepatic steatosis. Taken together, these results identify cGAS and Cx32 as key factors in ALD pathogenesis and as potential therapeutic targets for hepatoprotection.

CITA DEL ARTÍCULO  Proc Natl Acad Sci U S A. 2020 May 26;117(21):11667-11673. doi: 10.1073/pnas.1911870117. Epub 2020 May 11. 

Nuestros autores