Publicaciones científicas
Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function
Francisco J Ortega 1 2 , José M Moreno-Navarrete 1 2 , Josep M Mercader 3 , María Gómez-Serrano 4 , Eva García-Santos 4 , Jèssica Latorre 2 , Aina Lluch 2 , Mònica Sabater 1 2 , Estefanía Caballano-Infantes 1 2 , Rocío Guzmán 1 5 , Manuel Macías-González 1 6 , Maria Buxo 2 , Jordi Gironés 7 , Ramon Vilallonga 8 , Deborah Naon 9 10 , Patricia Botas 11 , Elias Delgado 11 , Dolores Corella 1 12 , Remy Burcelin 13 , Gema Frühbeck 1 14 , Wifredo Ricart 1 2 , Rafael Simó 10 15 , Ignacio Castrillon-Rodríguez 9 10 , Francisco J Tinahones 1 6 , Fátima Bosch 10 16 , Antonio Vidal-Puig 17 , María M Malagón 1 5 , Belén Peral 4 , Antonio Zorzano 9 10 , José M Fernández-Real 1 2
Abstract
During adipogenesis, preadipocytes' cytoskeleton reorganizes in parallel with lipid accumulation. Failure to do so may impact the ability of adipose tissue (AT) to shift between lipid storage and mobilization.
Here, we identify cytoskeletal transgelin 2 (TAGLN2) as a protein expressed in AT and associated with obesity and inflammation, being normalized upon weight loss. TAGLN2 was primarily found in the adipose stromovascular cell fraction, but inflammation, TGF-β, and estradiol also prompted increased expression in human adipocytes. Tagln2 knockdown revealed a key functional role, being required for proliferation and differentiation of fat cells, whereas transgenic mice overexpressing Tagln2 using the adipocyte protein 2 promoter disclosed remarkable sex-dependent variations, in which females displayed "healthy" obesity and hypertrophied adipocytes but preserved insulin sensitivity, and males exhibited physiologic changes suggestive of defective AT expandability, including increased number of small adipocytes, activation of immune cells, mitochondrial dysfunction, and impaired metabolism together with decreased insulin sensitivity.
The metabolic relevance and sexual dimorphism of TAGLN2 was also outlined by genetic variants that may modulate its expression and are associated with obesity and the risk of ischemic heart disease in men. Collectively, current findings highlight the contribution of cytoskeletal TAGLN2 to the obese phenotype in a gender-dependent manner.
CITA DEL ARTÍCULO FASEB J. 2019 Aug;33(8):9656-9671. doi: 10.1096/fj.201900479R. Epub 2019 May 30