Publicaciones científicas

A novel concept to include uncertainties in the evaluation of stereotactic body radiation therapy after 4D dose accumulation using deformable image registration

Azcona JD (1), Huesa-Berral C (1,2), Moreno-Jiménez M (3), Barbés B (1), Aristu JJ (3), Burguete J (2.)

(1) Service of Radiation Physics and Radiation Protection, Clínica Universidad de Navarra, Avda. Pío XII, 36. 31008, Pamplona, Navarra, Spain.
(2) Department of Physics and Applied Mathematics, School of Sciences, Universidad de Navarra. C/ Irunlarrea, 1. 31008, Pamplona, Navarra, Spain.
(3) Service of Radiation Oncology, Clínica Universidad de Navarra, Avda. Pío XII, 36. 31008, Pamplona, Navarra, Spain.

Revista: Medical Physics

Fecha: 11-ago-2019

Radiofísica Oncología Radioterápica

PURPOSE:

To use 4D dose accumulation based on deformable image registration (DIR) to assess dosimetric uncertainty in lung stereotactic body radiation therapy (SBRT) treatment planning. A novel concept, the Evaluation Target Volume (ETV), is introduced to achieve this goal.

METHODS:

The internal target volume (ITV) approach was used for treatment planning for eleven patients receiving lung SBRT. Retrospectively, 4D dose calculation was done in Pinnacle v9.10. Total dose was accumulated in the reference phase using DIR with MIM. DIR was validated using landmarks introduced by an expert radiation oncologist. The 4D and 3D dose distributions were compared within the gross tumour volume (GTV) and the planning target volume (PTV) using the D95 and Dmin (calculated as Dmin,0.035cc ) metrics. For lung involvement, the mean dose and V20 , V10 , and V5 were used in the 3D to 4D dose comparison, and Dmax (D0.1cc ) was used for all other organs at risk (OAR). The new ETV was calculated by expanding the GTV in the reference phase in order to include geometrical uncertainties of the DIR, interobserver variability in the definition of the tumor and uncertainties of imaging and delivery systems. D95 and Dmin,0.035cc metrics were then calculated on the basis of the ETV for 4D accumulated dose distributions, and these metrics were compared with those calculated from the PTV for 3D planned dose distributions.

RESULTS:

The target registration error (TRE) per spatial component was below 0.5±2.1mm for all our patients. For 5 patients, dose degradation above 2% (>4% in 2 patients) was found in the PTV after 4D accumulation and attributed to anatomical variations due to breathing. Comparison of D95 and Dmin,0.035cc metrics showed that the ETV (4D accumulated dose) estimated substantially lower coverage than the PTV (3D planning dose): in 3 out of the 11 cases, and for at least for one of the two metrics, coverage estimated by ETV was at least 6% lower than that estimated by PTV. Furthermore, the ETV approach revealed hot and cold spots within its boundaries.

CONCLUSIONS:

A workflow for 4D dose accumulation based on DIR has been devised. Dose degradation was attributed to respiratory motion. To overcome limitations in the PTV for the purposes of evaluating DIR-based 4D accumulated dose distributions, a new concept, the evaluation target volume (ETV), was proposed. This concept appears to facilitate more reliable dose evaluation and a better understanding of dosimetric uncertainties due to motion and deformation.

CITA DEL ARTÍCULO  Med Phys. 2019 Aug 11. doi: 10.1002/mp.13759.

tal vezLE INTERESE

¿QUÉ TECNOLOGÍA UTILIZAMOS?

La Clínica es el hospital privado con mayor dotación tecnológica de España, todo en un único centro.

Imagen de un PET, tecnología de vanguardia en la Clínica Universidad de Navarra

NUESTROS
PROFESIONALES

Los profesionales de la Clínica realizan una labor continuada de investigación y formación, siempre en beneficio del paciente.

Imagen profesionales de la Clínica Universidad de Navarra

POR QUÉ VENIR
A LA CLÍNICA

Conozca por qué somos diferentes a otros centros sanitarios. Calidad, rapidez, comodidad y resultados.

Imagen del edificio de la Clínica Universidad de Navarra