Scientific publications

Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells

May 17, 2016 | Magazine: Differentiation

Porciuncula A (1), Kumar A (2), Rodriguez S (1), Atari M (3), Araña M (4), Martin F (5), Soria B (5), Prosper F (1), Verfaillie C (6), Barajas M (7).


ABSTRACT

Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes.

Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure.

Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP+ population for downstream applications.

Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter.

Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes.

CITATION  Differentiation. 2016 May 12. pii: S0301-4681(16)30015-9. doi: 10.1016/j.diff.2016.04.005

Our authors

Navarre headquarters
Madrid headquarters