PUBLICAÇÕES científicas

Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin

Gurruchaga H (1), Ciriza J (2), Saenz Del Burgo L (3), Rodriguez-Madoz JR (4), Santos E (5), Prosper F (6), Hernández RM (7), Orive G (8), Pedraz JL (9).
(1) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
(2) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
(3) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
(4) Laboratory of Cell Therapy, Division of Oncology, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.
(5) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
(6) Hematology and Cell Therapy, Clinica Universidad de Navarra, University of Navarra, Pamplona 31008, Spain.
(7) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
(8) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain.
(9) NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain 

Revisão:Internal Journal of Pharmaceutics

Data: 1/Mai/2015

Área de Terapia Celular [ES]

RESUMO

The ability to cryopreserve and store for long term the structure and function of therapeutic cells and tissues plays a pivotal role in clinical medicine. In fact, it is an essential pre-requisite for the commercial and clinical application of stem cells since preserves cells at low temperature and creates a reserve for future uses.

This requisite may also affect the encapsulated stem cells. Several parameters should be considered on encapsulated cell cryopreservation such as the time and temperature during the cryopreservation process, or the cryoprotectant solutions used.

In this study, we have compared the influence of penetrating and nonpenetrating cryoprotectants on the viability and functionality of encapsulated mesenchymal stem cells genetically modified to secrete erythropoeitin.

Several cryoprotectant solutions combining DMSO, glycerol and trehalose at different concentrations were studied. Although almost no differences among the studied cryoprotectant solutions were observed on the differentiation potential of encapsulated mesenchymal stem cells, the penetrating cryoprotectant DMSO at a concentration of 10% displayed the best viability and erythropoietin secretion profile compared to the other cryoprotectant solutions.

These results were confirmed after subcutaneous implantation of thawed encapsulated mesenchymal stem cells secreting erythropoeitin on Balb/c mice. The hematocrit levels of these animals increased to similar levels of those detected on animals transplanted with noncryopreserved encapsulated cells.

Therefore, DMSO 10% represents the most suitable cryoprotectant solution among the solutions here studied, for encapsulated mesenchymal stem cells cryopreservation and its translation into the clinic. Similar studies should be performed for the encapsulation of other cell types before they can be translated into the clinic.

CITAÇÃO DO ARTIGO  Int J Pharm. 2015 May 15;485(1-2):15-24. doi: 10.1016/j.ijpharm.2015.02.047. Epub 2015 Feb 20.

talvezlhe interesse

QUE TECNOLOGIA UTILIZAMOS? 

A Clínica é o hospital privado com maiores recursos tecnológicos de Espanha, tudo num único centro.

Imagen de un PET, tecnología de vanguardia en la Clínica Universidad de Navarra

OS NOSSOS
PROFISSIONAIS

Os profissionais da Clínica realizam um trabalho contínuo de investigação e formação, sempre em benefício do paciente.

Imagen profesionales de la Clínica Universidad de Navarra

RAZÕES PARA VIR
À CLÍNICA

Conheça porque é que somos diferentes em relação a outros centros sanitários. Qualidade, rapidez, comodidade e resultados.

Imagen del edificio de la Clínica Universidad de Navarra