Scientific publications

Development and characterization of polo-like kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of alpha-synuclein

Rodríguez-Nogales C 1, Garbayo E 2, Martínez-Valbuena I 3, Sebastián V 4, Luquin MR (5), Blanco-Prieto MJ 6.
(1) Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain.
(2) Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
(3) Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.
(4) Chemical & Environmental Engineering Department & Nanoscience Institute of Aragon, University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
(5) Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain; Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.
(6) Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain

Magazine: International Journal of Pharmaceutics

Date: Nov 30, 2016

Neurology [SP]

ABSTRACT

Polo like kinase 2 (PLK2), a serine/threonine serum inducible kinase, has been proposed to be the major factor responsible for phosphorylating alpha-synuclein (α-syn) at Serine-129 (Ser-129) in Parkinson's disease (PD).

A suitable strategy to gain insights into PLK2's biological effects might be to increase PLK2 intracellular levels with the aim of reproducing the slow progressive neuronal changes that occur in PD.

The goal of this study was to develop and characterize a novel drug delivery system (DDS) for PLK2 cytosolic delivery using Total recirculating one machine system (TROMS), a technique capable of encapsulating fragile molecules while maintaining their native properties.

A protocol for nanoparticle (NP) preparation using TROMS was set up. NPs showed a mean diameter of 257±15.61nm and zeta potential of -16±2mV, suitable for cell internalization. TEM and SEM images showed individual, spherical, dispersed NPs. The drug entrapment efficacy was 61.86±3.9%. PLK2-NPs were able to enter SH-SY5Y cells and phosphorylate α-syn at Ser-129, demonstrating that the enzyme retained its activity after the NP manufacturing process.

This is the first study to develop a DDS for continuous intracellular delivery of PLK2. These promising results indicate that this novel nanotechnology approach could be used to elucidate the biological effects of PLK2 on dopaminergic neurons.

CITATION  Int J Pharm. 2016 Nov 30;514(1):142-149. doi: 10.1016/j.ijpharm.2016.06.044

you mayBE INTERESTED

WHAT TECHNOLOGY
DO WE USE?

The Clínica is the greater private hospital with technological equipment of Spain, all in a single center.

Imagen de un PET, tecnología de vanguardia en la Clínica Universidad de Navarra

OUR
PROFESSIONALS

The professionals of the Clínica perform continuous research and training, always to the benefit of the patient.

Imagen profesionales de la Clínica Universidad de Navarra

WHY CHOOSE
THE CLINICA?

Learn why we are different from other healthcare centers. Quality, speed, comfort and results.

Imagen del edificio de la Clínica Universidad de Navarra